

Larssen

Содержание

Введение	.4
Сертификаты	.5
Размеры и свойства шпунтов марки VL	
Размеры и параметры одиночной стенки	.8
Марки стали и допуски	.9
Комбинированные стенки	10
Технические условия и варианты форм поставки .1	11
Долговечность шпунтовых свай марки VL	12
Водонепроницаемость	14
Замки и угловые секции	15
Сравнение шпунтов марки VL с Л4, Л5 и Л5-УМ1	16
Оборудование для погружения и забивки шпунта	18
Примеры использования шпунта	19

Вашему вниманию предлагается новый каталог шпунтовых свай (шпунтов), выпускаемых компанией EVRAZ VITKOVICE STEEL, a.s., с 1935 г. Качество предлагаемого ассортимента известно во многих европейских странах.

Шпунтовые сваи (шпунты) широко и эффективно используются с 1910 года:

- 1. При строительстве шлюзов, молов, для укрепления береговой линии естественных и искусственных водоемов (реки, каналы, озера, заболоченные места) в качестве водонепроницаемой преграды для укрепления грунта при возведении строительных конструкций;
- 2. Для рытья и защиты котлованов и аналогичных работ, выполняемых как на суше, так и на воде;
- 3. Для сооружения подпорных стенок, откосов, а также при строительстве фундаментов возводимых зданий и т.п.
- Система шпунтин позволяет организовать безопасное пространство на строительной площадке, что значительно сокращает сроки строительномонтажных работ.

Существует множество видов профилей шпунтовых свай: корытные, Z-образные, плоские. Наиболее распространенным является корытный профиль.

Достоинства шпунта корытного профиля:

- Широкий диапазон профилей, формирующих несколько серий с различными геометрическими характеристиками и предлагающих выбор сечений, которые по техническим и экономическим показателям являются оптимальными для конкретного проекта;
- Сочетание большой глубины волны (в поперечном сечении шпунта) с большой толщиной полки обеспечивает превосходные статические свойства;
- 3. Симметричность формы одиночного элемента делает этот шпунт особенно удобным для извлечения и повторного использования;
- 4. Возможность сборки и фиксации свай в пары в

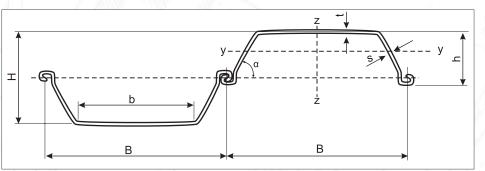
- заводских условиях повышает качество монтажа и производительность работ;
- 5. Легкий монтаж анкерных устройств и шарнирных соединений (даже под водой);
- 6. Высокое сопротивление коррозии, расположение большей части толщины стали с внешней стороны контура.

На постсоветском пространстве традиционно используется шпунт торговых марок Л4, Л5, Л5-УМ, который по сопоставимым показателям не обеспечивает конкурентоспособность со шпунтом производства EVRAZ VITKOVIZE STEEL, а.s., Чехия. Традиционные проектные решения являются экономически нецелесообразными по причине того, что даже такие крупнейшие производители, как Днепропетровский (ДМК) и Нижнетагильский (НТМК) металлургические комбинаты не предлагают разнообразия профилей и марок стали, а также высококачественных и надежных замковых соединений. У ДМК две марки стали и два профиля, у НТМК один профиль.

OOO «Электро Макс» предлагает стальные шпунтовые сваи компании EVRAZ VITKOVIZE STEEL, a.s., Чехия.

Преимущества высококачественного шпунта производства EVRAZ VITKOVIZE STEEL:

- 1. Разнообразие типо-сорто размеров,
- 2. Наличие переходных, соединительных и угловых свай;
- 3. Широкий диапазон воспринимаемых усилий (по несущей способности шпунтовой стены);
- 4. Широкая гамма используемых марок сталей,
- 5. Возможность антикоррозионной защиты и обработки гидроизолирующей смесью PILELOCK, которая активизируется при соприкосновении с водой и гарантирует полную водонепроницаемость замков шпунтовых соединений;
- 6. Мерная нарезка шпунта по заявке Заказчика длинной от 1 до 24м;
- 7. Сервисные, проектные, технические, технологические и консалтинговые услуги.


Уровень качества шпунтовых свай предприятия EVRAZ VITKOVIZE STEEL, a.s., Чехия, производимых на станах крупносортного проката, гарантируется рядом сертификатов:

- Системные сертификаты: EVRAZ VITKOVICE STEEL, a.s. владеет сертификатами согласно стандартам EN ISO 9001, GOST R ISO 9001, API и EN ISO 14001.
- Сертификаты на продукцию.

Размеры и свойства шпунтов марки VL

Таблица 1. Размеры и свойства шпунтов марки VL

		Ma	acca				
Профиль	Упругий момент сопротивления	секции (погонные метры)	стены (м²)	Ширина профиля	Высота стенки	Высота шпунтины	Толщина дна
	W _y	g	G	В	Н	h	t
	CM ³ /M	кг/м	KΓ/M²	ММ	MM	ММ	ММ
IIIn	1600	62,2	155,5	400	290	168,0	13,0
VL 503	1250	58,7	117,3		340	190,0	9,7
VL 503K	1300	61,4	122,8	500	340	190,0	10,0
VL 503Z	1336	65,3	130,6		340	191,0	10,0
VL 601	742	46,3	77,2		310	175,5	7,5
VL 602L	800	51,3	85,4		310	175,5	8,0
VL 602	845	54,3	90,5		310	175,5	8,2
VL 603A	1121	61,5	102,5		310	176,8	9,2
VL 603	1180	64,8	108,0		310	177,0	9,7
VL 603K	1220	68,1	113,5		310	177,0	10,0
VL 603Z	1265	71,8	119,7	600	310	177,0	10,0
VL 603Z11+	1386	80,4	134,0	000	310	179,0	11,0
VL 604	1620	74,1	123,5		380	212,0	10,5
VL 605A	1808	76,9	128,1		410	227,0	11,0
VL 605	2006	82,4	137,3		410	228,0	12,8
VL 605K	2000	84,5	140,9		410	228,0	12,2
VL 606A	2200	86,2	143,7		420	232,0	14,0
VL 606	2506	94,8	158,0		420	232,7	16,5

Гидротехническое строительство:

- берегозащитные стены
- причальные сооружения
- расширение водных путей
- герметичные стены
- укрепление берегов
- закрепления от размывов
- шлюзы
- плотины
- устои мостов

Размеры и свойства шпунтов марки VL

		_					
Толщина боковой грани	Ширина дна	Площадь поперечного сечения стены	Момент инерции	Радиус инерции	Статический момент	Пластический момент сопротивления	Площадь стены
s	b	A	I _y	r _y	S _v	W _{pl,y}	\$2)
ММ	ММ	CM ² /M	CM ⁴ /M	см/м	CM³/M	CM ³ /M	M²/M
9,0	253,4	197,2	23200	10,9	878	1756	3,15
8,4	266,1	149,4	21191	11,9	715	1430	2,85
9,0	266,0	156,4	22054	11,9	747	1494	2,84
10,0	264,6	166,4	22719	11,7	775	1550	2,85
6,4	253,4	98,3	11496	10,8	429	858	2,49
7,2	252,0	108,8	12404	10,7	465	930	2,48
8,0	250,1	115,4	13075	10,6	495	990	2,49
8,0	384,1	130,6	17381	11,5	623	1246	2,71
8,4	383,7	137,6	18251	11,5	654	1308	2,65
9,0	382,7	144,8	18900	11,4	680	1360	2,65
10,0	380,3	152,8	19584	11,3	705	1410	2,65
11,0	379,8	170,7	21489	11,2	781	1562	2,66
9,0	379,8	157,3	30726	14,0	911	1822	2,85
9,0	349,5	163,2	37065	15,1	1024	2048	2,88
9,0	367,9	174,9	41127	15,3	1128	2256	2,95
10,0	357,1	179,5	41008	15,1	1135	2270	2,89
9,0	347,7	183,1	46217	15,9	1238	2476	2,90
9,2	347,6	201,3	52631	16,2	1403	2806	2,90

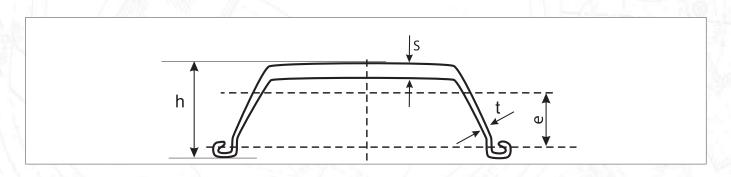
Строительство путей сообщения:

- защитные стены
- звукоизоляционные стены
- устои мостов
- рампь
- резервуары для грунтовых вод
- тоннели

Инженерное

и подземное строительство:

- основания и фундаменты
- крепления траншей
- подземные гаражи
- строительство жилых и промышленных зданий


Охрана окружающей среды:

- полигоны твердых и био отходов
- герметичные коллекторы
- строительные котлованы для замены почвы
- звукоизоляция
- защита водоемов
- бассейны для сбора дождевой воды
- очистные сооружения

Размеры и параметры для одиночной стенки

Таблица 2. Размеры и параметры для одиночной стенки

					-					
	Сечение	Высота	Угол	Центр тяжести		момент ивления	Момент	инерции	Радиус	инерции
Профиль	s	h	а	е	W _y	W _z	l _y	l,	r _y	r _z
	CM ²	ММ	o	ММ	CM ³	CM ³	CM ⁴	CM ⁴	СМ	СМ
IIIn	78,9	168,0	81,9	112,0	271	880	3041	16820	7,0	14,6
VL 503	74,7	190,0	63,4	115,7	324	859	3752	23014	7,1	17,6
VL 503K	78,2	190,0	63,4	115,5	337	900	3895	24121	7,1	17,6
VL 503Z	83,2	191,0	63,4	114,1	363	975	4148	26227	7,1	17,8
VL 601	59,0	175,5	43,5	107,8	223	770	2401	24419	6,4	20,3
VL 602L	65,3	175,5	43,5	106,5	251	865	2669	27461	6,4	20,5
VL 602	69,2	175,5	43,5	106,3	259	913	2749	28947	6,3	20,5
VL 603A	78,3	176,8	61,2	117,2	281	1065	3298	33868	6,5	20,8
VL 603	82,6	177,0	61,2	117,1	297	1123	3482	35766	6,5	20,8
VL 603K	86,9	177,0	61,2	115,9	317	1196	3679	38043	6,5	20,9
VL 603Z	91,5	177,0	61,2	114,5	343	1290	3921	41015	6,5	21,2
VL 603Z11+	102,5	179,0	61,2	115,4	375	1425	4331	45537	6,5	21,1
VL 604	94,4	212,0	66,5	137,8	419	1303	5777	41439	7,8	21,0
VL 605A	97,9	227,0	66,5	147,5	462	1309	6815	41774	8,3	20,6
VL 605	104,9	228,0	66,5	152,0	475	1354	7223	43206	8,3	20,3
VL 605K	107,7	228,0	66,5	149,5	493	1430	7371	45548	8,3	20,5
VL 606A	109,8	232,0	66,5	157,2	467	1359	7653	43343	8,3	19,8
VL 606	120,8	232,7	66,5	162,1	500	1427	8103	45370	8,2	19,4

Марки стали и допуски

Таблица 3. Физические свойства стали

	Миним. предел пластичности	Миним. сопротивление растяжению	Мин. относит. удлинение	Допустимые напряжения		
Марка стали	R _{eH}	R _m	A	Растяжение и растяжение на изгибе	Сжатие и сжатие на изгибе	Срез
	H/	MM ²	%	H/mm²		
S 240 GP	240	340	26	160	140	92
S 270 GP	270	410	24	180	160	104
S 320 GP	320	440	23	213	189	125
S 355 GP	355	480	22	240	210	139
S 390 GP	390	490	20	260	231	150
S 430 GP	430	510	19	286	255	165

Таблица 4. Геометрические допуски шпунтовых свай в соответствии с EN 10248

Параметр	Область действительности	Допуск
Di 10070 comuni h	h ≤ 200 мм	± 4 мм
Высота секции h	h > 200 мм	± 5 мм
Ширина секции (одиночной сваи) В		± 2 % B
Ширина двойной сваи 2В		± 3 % B
Ta-www.a-wa Kawasaŭ -maw	s, t ≤ 8,5 mm	± 0,5 мм
Толщина дна, боковой грани	s, t ≤ 8,5 мм	± 6 % s, t
Отверстие замка		± 2 мм
Ширина замка		± 2,5 мм
Длина шпунта L		± 100 мм
Прямолинейность		q ≤ 0,2 % L
Перпендикулярность резки		q ≤ 2 % B
Macca		± 5 %

Таблица 5. Химический состав стали (% макс.)

Марка	С	Mn	Si	Р	S	N
S 240 gp	0,25		_	0,055	0,055	0,011
S 270 GP	0,27		_	0,055	0,055	0,011
S 320 GP	0,27	1,70	0,60	0,055	0,055	0,011
S 355 GP	0,27	1,70	0,60	0,055	0,055	0,011
S 390 GP	0,27	1,70	0,60	0,055	0,055	0,011
S 430 GP	0,27	1,70	0,60	0,055	0,055	0,011

Комбинированные стенки

Варианты соединений шпунта в стенку

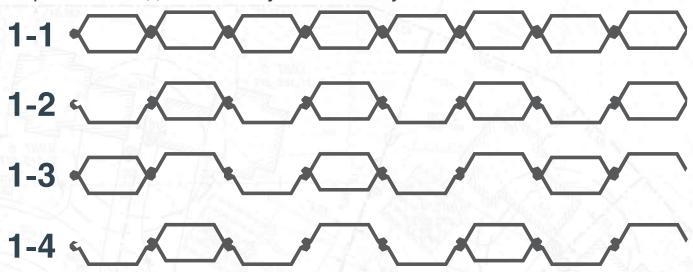


Таблица 6—9. Физические свойства комбинированных стенок

1-1	Ширина системы	Macca	Wsys	Isys
1-1	ММ	KΓ/M²	CM/M ³	CM/M⁴
VL 601	600	154,3	1757	30850
VL 602	600	181	1996	35033
VL 603	600	216	2789	49366
VL 604	600	247	3727	79033
VL 605A	600	256,3	4127	93700
VL 605	600	274,7	4601	104916
VL 606	600	316	5706	132800

1-2	Ширина системы	Macca	Wsys	Isys
1-2	ММ	KΓ/M²	CM/M³	CM/M⁴
VL 601	1800	102,9	1022	17947
VL 602	1800	120,7	1162	20394
VL 603	1800	144	1617	28622
VL 604	1800	164,7	2208	46828
VL 605A	1800	170,9	2464	55943
VL 605	1800	183,1	2736	62390
VL 606	1800	210,7	3410	79354

1-3	Ширина системы	Macca	Wsys	Isys
1-3	мм	KΓ/M²	CM/M ³	CM/M ⁴
VL 601	1200	115,7	992	17425
VL 602	1200	135,7	1128	19807
VL 603	1200	162	1558	27585
VL 604	1200	185,2	2091	44330
VL 605A	1200	192,2	2314	52529
VL 605	1200	206	2564	58477
VL 606	1200	237	3143	73152

	Ширина системы	Macca	Wsys	Isys
1-4	мм	KГ/M²	CM/M ³	CM/M ⁴
VL 601	2400	96,4	895	15708
VL 602	2400	113,1	1014	17804
VL 603	2400	135	1412	24995
VL 604	2400	154,4	1936	41054
VL 605A	2400	160,2	2161	49070
VL 605	2400	171,7	2397	54666
VL 606	2400	197,5	2982	69404

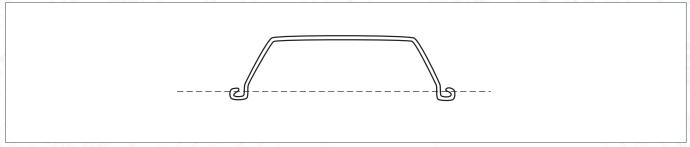
Технические условия и варианты форм поставки

Запресовка

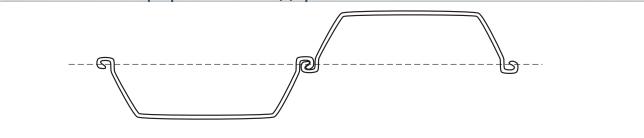
Возможны варианты поставки одиночных, двойных и тройных шпунтовых свай. При поствавке двойных и тройных шпунтовых свай моменты сопротивления профилей марки VL, указаные в каталоге, обуславливают блокировку свайных замков посредством запресовки. Запресовка двойных и тройных шпунтин производится на расстоянии 0,2 м по всей длине шпунтины. При запресовке в двойные и тройные сваи, физические свойства шпунтовой стенки улучшаются на 15 и 30% соответственно.

Производство отверстий

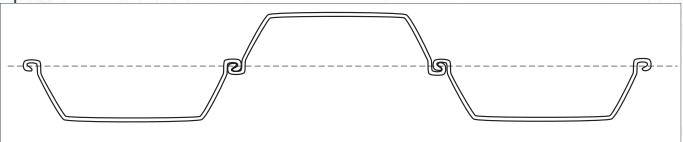
Перфорация монтажных отверстий выполняется по желанию покупателя согласно указанному чертежу в полке каждой шпунтины. Расстояние отверстия от верхней грани составляет 75 или 300 мм. Просьба указать при заказе.

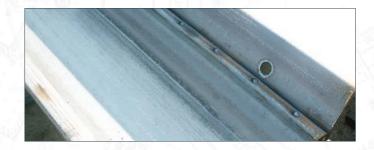

Транспортировка

Транспортировка шпунтин производится автомобильным или железнодорожным транспортом.


Нарезка

Шпунтины нарезаются мерной длиной от 1 до 24 метров по заявке заказчика.





Двойная свая — форма S стандартная

Тройная свая

Долговечность шпунтовых свай марки VL

Таблица 10. Предписанные величины потери толщины стенок шпунта [мм] вследствие коррозии шпунта в грунте сухом или мокром

Требуемый проектный срок годности шпунта	5 лет	25 лет	50 лет	75 лет	100 лет
Материковый грунт (песок, пыль, глина, сланец и др.)	0,00	0,30	0,60	0,90	1,20
Загрязненный материковый грунт и промышленная местность	0,15	0,75	1,50	2,25	3,00
Агрессивный материковый грунт (нанос, торф, гиттья и др.)	0,20	1,00	1,75	2,50	3,25
Неуплотненные и неагрессивные насыпи (песок, пыль, глина, сланец и др.)	0,18	0,70	1,20	1,70	2,20
Неуплотненные и агрессивные насыпи (пепел, шлак и др.)	0,50	2,00	3,25	4,50	5,74

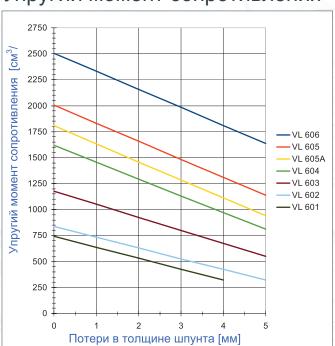
Замечания:

Таблица 11. Предписанные величины потери толщины стенок шпунта [мм] вследствие коррозии шпунта в воде

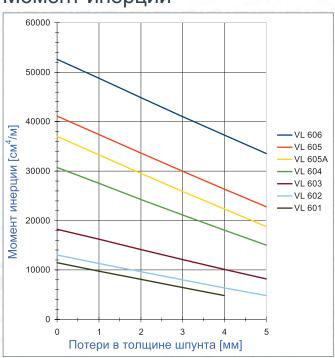
Требуемый проектный срок годности шпунта	5 лет	25 лет	50 лет	75 лет	100 лет	
Обычная пресная вода (река, канал и др.) в зоне струи (на линии воды)	0,00	0,30	0,60	0,90	1,20	
Очень загрязненная пресная вода (сточный канал, промышленный утечка и др.) в зоне струи (на линии воды)	0,15	0,75	1,50	2,25	3,00	
Морская вода в умеренном климате, в зоне сильного прилива (зона низких вод, зона прибоя волны)	0,20	1,00	1,75	2,50	3,25	
Морская вода в умеренном климате, в зоне постоянного погружения или прибоя волны	0,18	0,70	1,20	1,70	2,20	
Ta Mutaucuruocta konnoguu uurvutorakiy oran ornorrakkon uonma EN 1003-5						

Та Интенсивность коррозии шпунтовых свай по европейской норме EN 1993-

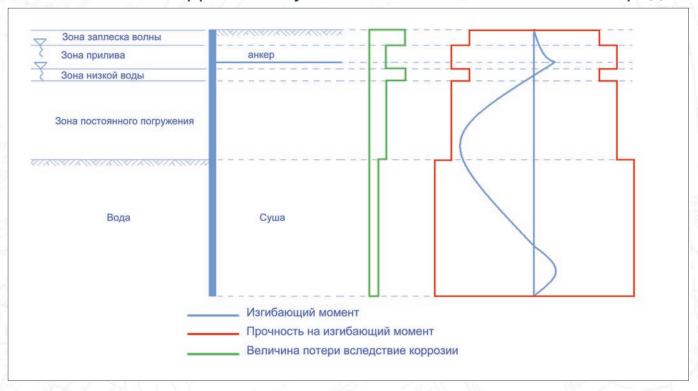
Замечания:


- 1) Максимальные коррозионные потери обычно выступают в зоне прибоя волны или при уровне низкой воды в зоне отлива. В большинстве случаев максимальное напряжение изгиба выступают в зоне постоянного погружения. (Рисунок 1)
- 2) Величины коррозии по 5 и 25 лет определены на основании исследований, остальные величины экстраполированные.

¹⁾ Коррозионные потери в уплотненных насыпях в два раза меньше чем в неуплотненных.


²⁾ Величины коррозии по 5 и 25 лет определены на основании исследований, остальные величины экстраполированные.

Долговечность шпунтовых свай марки VL


Упругий момент сопротивления

Момент инерции

Интенсивность коррозии шпунтовых свай в зависимости от среды

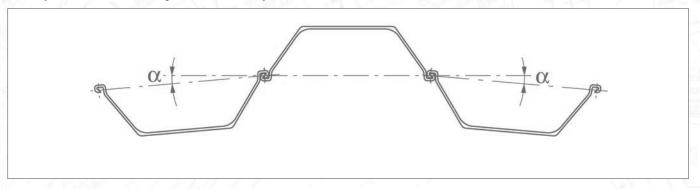
Водонепроницаемость

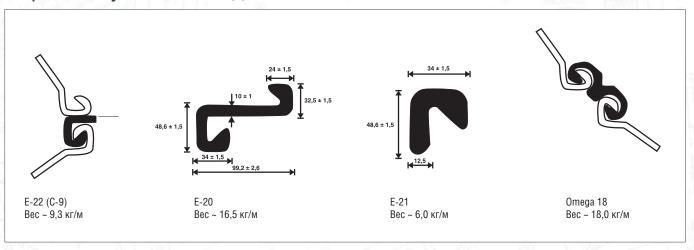
PILELOCK это набухающая в воде смесь, которая используется для уплотнения замков шпунта. Смесь наносится апликационно на внутреннюю часть замка шпунтины и просушивается в течении 24 часов. Перед транспортировкой шпунтины с обработанными замками запаиваются в индивидуальную пвх упаковку.

При контакте с водой PILELOCK увеличивает свой объем в 20 раз, что гарантирует почти 100% водонепроницаемость замков шпунта. Максимальное давление воды, при использовании PILELOCK, достигает 30 метров. Обработанные таким образом шпунты можно использовать как в пресной, так и в морской воде. PILELOCK безвреден для окружающей среды, что допускает его использование в бассейнах и резервуарах питьевой воды. Смесь PILELOCK имеет все требуемые сертификаты допускающие его использование. Продукт можно легко удалить с поверхности замка, при повторном использовании шпунта т.к. он обладает свойствами силикона.

По желанию клиента предлагаем поставки как самого препарата PILELOCK так и выполняем обработку замков заказанных шпунтов.

Замки и угловые секции




Теоретический угол поворота замка

Все шпунтовые сваи марки VL оснащены замками LARSSEN в соответствии с EN 10248 и совместимы между собой.

Теоретический угол поворота замка a-max = 5°

Варианты угловых соединений

С помощью специальных угловых секций, соединяющихся со шпунтинами, можно формировать угловые или соединительные сваи, не переделывая стандартные.

Угловые секции соединяются со шпунтовыми сваями в соответствии с EN 12063. Сварка на угловых секциях осуществляется с отступом 200 мм от верха сваи.

Сравнение шпунтов марки VL с Л4, Л5 и Л5-УМ

Широкое употребление шпунта марок Л4 и Л5 на постсоветском пространстве не всегда экономически целесообразно. Сделаем сравнительный расчет по массе шпунта с аналогичной несущей способностью: Если надо оградить котлован периметром 100 м шпунтом длиной 9,5 м, то соответственно площадь шпунтовой стенки составит 950 квадратных метров.

На данную площадь стенки потребуется шпунта марки Л4:

247 штук шпунтин длиной 9,5 м, что составляет 173,57 т.

Поскольку шпунт марки Л4 нарезается мерной длиной 6 или 12 м, то на практике получится:

247 штук шпунтин длиной 12 м, что составляет 219, 24 т.

Шпунта чешского производства марки VL 605 (270 GP) с аналогичной несущей способностью стенки за счет ширины и лучших механических свойств потребуется:

167 штук шпунтин длиной 9,5 м, что состовляет 130,44 т.

Т.к. шпунт марки VL нарезается любой мерной длиной от 6 до 14 м, то его потребуется 130,44 т. Получаем:

	Л4	VL 605 (270 GP)			
Периметр котлована, м	100	100			
Длина шпунтин, м	9,5 (12,0)	9,5			
Площадь стенки, кв. м	950 (1200)	950			
Кол-во шпунтин, шт	247	167			
Масса стенки, т	173,57 (219,24)	130,44			

Наглядно видно, что если даже брать мерный шпунт 9,5 м, то экономия по массе составит 25 %. Аналогичный сравнительный расчет можно провести и для шпунта марки Л5 в сравнении с VL 605 (355 GP).

Если надо оградить котлован периметром 100 м шпунтом длиной 9,5 м, то получится:

	Л5	VL 605 (355 GP)		
Периметр котлована, м	100	100		
Длина шпунтин, м	9,5 (12,0)	9,5		
Площадь стенки, кв. м	950 (1200)	950		
Кол-во шпунтин, шт	238	167		
Масса стенки, т	226,10 (285,60)	130,44		

В данном случае экономия по массе составит более 42%.

Данные расчеты производятся для шпунта со схожей расчетной несущей способностью стенки, потому что шпунт марки Л4, Л5 и Л5-УМ не отличается разнообразием профилей (всего 3 профиля). Шпунт LARSSEN чешского производства EVRAZ VITKOVIZE STEEL предлагает 18 видов профилей, что, в сочетании с возможностью отлива из 3 марок стали, позволяет подобрать несущую способность стенки из 54 вариаций, наиболее подходящих вашему проекту, а значит экономия может быть значительно больше.

Наглядно это видно на примере строительства Чижовской малой гидроэлектростанции (РБ, г. Минск). Был применен шпунт марки VL 604 (270 GP) взамен предлагаемого Л4. При стоимости работ по устройству шпунтовой стенки в 1 млрд. бел. рублей экономия составила порядка 250 млн. бел. рублей. А это для заказчика экономия 25% реальных денег.

Специалисты ООО «Электро Макс» готовы оказать помощь при принятии рациональных проектных решений, как на этапе нового проектирования, так и при корректировке разработанных проектов. При этом осуществляется полный учет требований ГОСТов, СНиПов, индивидуальных требований заказчика или подрядчика, что обеспечит наибольшую техническую и экономическую рациональность решений

Сравнение шпунтов марки VL с Л4, Л5 и Л5-УМ

Тип сваи Стали	Ширина шпунта* к длин	Приведен	нная масса Упругий		Мини- мальный	Прочность	Экономия		
		к длине шпунта	к площади шпунта	момент сопротивления	мальный предел текучести	шпунтовой стенки	массы на м2		
		ММ	кг/м	KГ/M²	CM ³ /M	H/mm²	kНм/м	КГ	%
Л4	Ст3кп	405	74	182.7	2200	235	517	_	_
VL603K	S430GP	600	68.1	113.5	1220	430	525	-69.2	37.9
VL604	S355GP	600	74.1	123.5	1620	355	575	-59.2	32.4
VL605	S270GP	600	82.4	137.3	2006	270	542	-45.4	24.8
VL606	S270GP	600	94.8	158,0	2506	270	677	-24.7	13.5
Л4	16хг	405	74	182.7	2200	270	594	_	_
VL604	S390GP	600	74.1	123.5	1620	390	632	-59.2	32.4
VL605A	S355GP	600	76.9	128.1	1808	355	642	-54.6	29.9
VL605	S320GP	600	82.4	137.3	2006	320	642	-45.4	24.8
VL606	S270GP	600	94.8	158,0	2506	270	677	-24.7	13.5
Л5	Ст3кп	420	100	238.1	2962	235	696	_	_
VL604	S430GP	600	74.1	123.5	1620	430	697	-114.6	48.1
VL605A	S390GP	600	76.9	128.1	1808	390	705	-110.0	46.2
VL605	S355GP	600	82.4	137.3	2006	355	712	-100.8	42.3
Л5	16хг	420	100	238.1	2962	270	800	_	_
VL605	S430GP	600	82.4	137.3	2006	430	863	-100.8	42.3
Л5-УМ	C255	500	113,9	227,8	3555	235	835	_	_
VL605	S430GP	600	82.4	137.3	2006	430	863	-90,5	39,7

^{*} По центру замка

Оборудование для погружения и забивки шпунта

Значительная экономия средств возможна также при применении рациональных технологий погружения свай и шпунта.

Рекомендуются следующие технологии:

- 1. Забивка шпунта (свай) молотами (ударным методом);
- 2. Погружение шпунта (свай) с помощью вибрации (вибрационным методом);
- 3. Статическое вдавливание свай (метод вдавливания);
- 4. Комбинированный метод погружения свай вибрацией с дополнительным пригрузом от массы базовой машины (метод вибровдавливания);
- Погружение свай с помощью подмыва (метод гидропогружения).

Ударный метод погружения шпунтовых свай применяется в различных грунтах, но существуют ограничения при работе в условиях плотной городской застройки.

Использование мощных навесных вибропогружателей позволяет вести работы в сложных грунтах, а также при устройстве шпунтовой стены с плавсредств.

Способ вибропогружения шпунта установками на базе экскаваторов позволяет производить работы в стесненных условиях (т.к. не требуется одновременная работа нескольких единиц техники). При использовании данного вибропогружателя (благодаря боковому захвату сваи) можно поднять, переместить по строительной площадке, погрузить или извлечь металлический шпунт.

Шпунтовое ограждение из металлических свай подлежит обратной выемке до 24 и более циклов, что обеспечивает дополнительную экономическую эффективность проектов.

ООО «Электро Макс» сотрудничает с компаниями, способными быстро и качественно произвести работы по монтажу и демонтажу шпунтовых стен с использованием собственной техники.

Примеры использования шпунта.

Строительсво спортивных сооружений

Ограждения, предотвращающие поступление грунтовых вод при строительстве дорог

Противопаводковая защита

Котлованы для построения канализационных коллекторов при новой очистке сточных вод

Элементы конструкций, предохраняющие дороги от оползней

Укрепление набережных, причалов, берегов рек и водоемов

Формирование русла реки

Ваш региональный представитель:

ООО «ЭЛЕКТРО МАКС» 220005, Беларусь, г. Минск, ул. Платонова, д. 32, ком. 19, тел./факс: +375 (17) 29 29 973,

www. electromax.by; e-mail: info@electromax.by